
LJournal of Alloys and Compounds 281 (1998) 211–221

Induced helices, tetrahedrons and spirals in yellow InCl
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Abstract

The structure of yellow InCl is explained. The cubic cell contains 20 trigonally and 12 digonally distorted InCl -octahedra, due to the6
2 1(5s) -outer electron configuration of In . To a good approximation the structure can be seen as distorted rocksalt, due to three equally

strong lattice modes. The distortions of the local octahedra, of various symmetry-type, can be calculated from the structure, derived from
available XRD-data. It is possible from these to deduce bilinear forms, which express chirality, tetrahedron forming and spiral forming.
Chirality is especially interesting, since there is an optical analogue and one of the expressions for chirality resembles the rotational
strength as described by Condon for optical rotation. The other form of chirality goes beyond the Condon approximation and arises since
the size of these octahedra is about 1 /3 of the wave length of the helices. The three lattice modes induce a number of anti-ferrodistortive
distributions of helices, tetrahedrons and spirals. In addition, there is also one ferrodistortive component for chirality and one for
tetrahedron forming.  1998 Elsevier Science S.A. All rights reserved.
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1. Introduction possibility of mixing of electronic 2s and 2p states for one
electron in an excited F-center by means of t vibrations,1 u

1The monopositive ion In has the outer electronic which is called a pseudo Jahn–Teller effect (PJTE). Ham
2structure of (5s) . In InCl it exhibits stereochemical [7] studied these F-centers more extensively and discussed

activity of the lone pair of electrons in several ways. InCl already trigonally and tetragonally deformed octahedra.
occurs in a yellow and a red form. The red crystals have Pearson [8] introduced the concept in another field, calling
the so-called b-TlI structure, which occurs more often for it second order Jahn–Teller effect. Maaskant and Bersuker

1 2 1A B -compounds where A has a lone electron pair. The [9] reformulated the theory for one and for two electrons.
structure of yellow InCl is unique in the sense, that no A pseudo Jahn–Teller effect occurs through the t -modes,1u

other compound with this crystal structure is known. which couple the A ground state and the T -excited1g 1 u

Yellow InCl is stable below 390 K. We will discuss in this state. Since the T -state is Jahn–Teller active, one can1u

paper only yellow InCl, which will be denoted as InCl. speak of a combined PJTE and JTE. Important results are
The crystal structure of (yellow) InCl has been de- that for a single octahedron with a stereochemical lone pair

termined by XRD for the first term by Van den Berg [1,2]; on the central ion four forms can be derived: An undis-
the structure has been redetermined by Van der Vorst, torted octahedron, a ‘trigonal’ one, a ‘tetragonal’ one and
Verschoor and Maaskant [3]. Van den Berg tried to an ‘intermediate’ form. For isolated octahedra the (linear)
rationalize the observed structure by assuming metal– theory predicts that in the case of a PJTE the ‘inter-
metal bonding. However, Van der Vorst and Maaskant [4] mediate’ form has an energy in between the ‘trigonal’ and
argued that both in yellow and red InCl stereochemically the ‘tetragonal’ species [7,9]. However, from these theories

1active lone pairs on the In -ions are present. it cannot be deduced whether the ‘trigonal’ or the ‘tetra-
The important contribution from the Jahn–Teller point gonal’ variant is the most stable one. Maaskant [10] has

¨of view is from Opik and Pryce [6] mainly for the studied the local octahedra in yellow and in red InCl
description of the T^(e 1t ) Jahn–Teller effect (JTE) earlier. From the occurrence of the ‘trigonal’ species andg 2 g

for an electron in an orbital T-state. They also mention the the total absence of the ‘tetragonal’ form in the crystal
structure, it can be concluded that in InCl the ‘trigonal’

* variant is the most stable one. However, there appears toCorresponding author. Tel.: 131-71-527-4214; fax: 131-71-527-
4537; e-mail: maaskant@chem.leidenuniv.nl be an additional anharmonic energy term in the ‘inter-
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Table 1mediate’ species (in this paper called the ‘digonal’ form).
Deviations in yellow InCl from the idealized B1 positions given asThis anharmonicity will be shown to be essential for the
fractions of the cubic cell parameter of InCl

existence of this crystal structure.
Ion x y z d d d0 0 0 x y zThe space group of InCl is P2 3 (Z532). It is a1

1 1¯
] ]subgroup of Fm3m, the space group of rocksalt (also In(1) 0 20.0013 20.0302 20.02884 4
3 3
] ]In(2) 0 0.0027 0.0281 0.0295referred to as the B1 structure). The symmetry lowering is 4 4

In(3) 0 0 0 0.0302 0.0302 0.0302a factor 128, obtained by an increase of the cell volume by
1 1 1
] ] ]In(4) 20.0327 20.0327 20.03272 2 2a factor of 32 (one should consider the primitive cell of 1
]Cl(1) 0 0 0.0505 20.0504 0.00054
3rocksalt) and a factor of four for the lowering of the point ]Cl(2) 0 0 0.0498 0.0549 20.011041 1 1 1
] ] ]group of the crystal from O to T. The 32 In ions are Cl(3) 20.0439 20.0439 20.0439h 4 4 4
3 3 3
] ] ]Cl(4) 0.0486 0.0486 0.0486placed in two twelve-fold and two fourfold positions. The 4 4 4

fourfold positions are on threefold rotation axes. The same
2applies to the Cl -ions. These sites have been numbered 1

to 4 by Van der Vorst et al. [4]. It turns out that the This paper is a simplified discussion of a paper by us
InCl -complexes (type 3 and 4) with the fourfold positions [14]. The proofs of formulae by means of solid state group6

are trigonal. This is almost so for the twelve-fold position theory have been omitted. For clarification only a limited
type 2. The type 1 InCl can better be described as amount of group theory for point groups will be used, as is6

digonal. Fig. 1 gives an impression of the trigonally and of given by e.g. Cotton [15].
the digonally distorted octahedra. More exact drawings
from the ClIn -octahedra also have been published by Van6

der Vorst and Maaskant, [4]. It is not difficult to derive the 2. The deformations
actual displacements from the NaCl-positions. Although
the crystal structure determinations have been reported in Table 1 expresses the experimental distortions from the
the scheme of the International Tables, Van der Vorst [5] B1(rocksalt) structure. The B1 positions, expressed in the
gave already the amplitudes of the observed lattice symme- cell of InCl, are given in the columns headed by x , y , z .0 0 0

try modes, referred to the rocksalt structure. The deviations (d , d , d ) are, in absolute sense, an orderx y z

Although no phase transition to the rocksalt structure of magnitude smaller than the rocksalt values, giving
has been found, it is enlightening to discuss the conditions further evidence of the subgroup–group relationship be-
for a second order phase transition according to Landau tween yellow InCl and the B1 structure.
[11,12] or Landau and Lifshitz [13]. For the case of a Table 2 gives the experimental symmetry coordinates.
continuous or second order phase transition in solids, These have for the first time been calculated by Van der
Landau and Lifshitz showed that an expansion of the free Vorst (1981) [5], but in [14] we give slightly different
energy in terms of the relevant order parameter should be normalized lattice modes. The primed symbols denote the
possible. There are four conditions to be fulfilled. These In ions, while the unprimed symbols denote the Cl ions.
can be investigated by group theory (mostly solid state The precision of these numbers is the same as that for the
group theory). When a subgroup–group relationship exists crystal structure determination. Obviously some of these
between two phases of a compound, it is possible to symmetry coordinates are large and others very small. We
investigate these conditions and determine whether the have therefore made an approximation, the ‘geometric’
transition is of second order, or for what reason this is not approximation. In Table 3 we list the parameters of this
to be expected. Notice that the first condition has been approximation. There are two circularly polarized waves:
satisfied: The space group of InCl is a subgroup of the Those with the d- and d9-parameters, the D-waves, and
space group of rocksalt. those with the w- and w9-parameters, the W-waves. The

Table 2
Experimental symmetry coordinates

9 9d 50.0197 s 520.0001 d 50.0272 s 520.00011 1 1 1

9 9d 520.0191 s 520.0014 d 520.0248 s 50.00282 2 2 2

9 9w 50.0188 s 520.0252 w 520.0342 s 520.04561 3 1 3

9 9w 50.0166 l 520.0002 w 50.0318 l 50.00022 1 2 2

Table 3
Symmetry coordinates for the ‘geometric’ approximation

9 9d 50.0184 s 50.0000 d 50.0300 s 50.00001 1 1 1

9 9d 520.0184 s 50.0000 d 520.0300 s 50.00002 2 2 2

9 9w 50.0184 s 520.0260 w 520.0300 s 520.04251 3 1 3Fig. 1. Trigonally (a) and digonally (b) distorted octahedrons due to a
9 9w 50.0184 l 50.0000 w 50.0300 l 50.00002 1 2 2stereochemically active lone pair.
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Table 4
The coordinates arising from the ‘geometric’ approximation and the deviations of the observed coordinates (the last three columns)

Ion x y z d d d u u u0 0 0 x y z x y z

1 1
] ]In(1) 0 0.0000 20.0301 20.0301 20.0013 20.0001 0.00134 4
3 3
] ]In(2) 0 0.0000 0.0301 0.0301 0.0027 20.0020 20.00064 4

In(3) 0 0 0 0.0301 0.0301 0.0301 0.0001 0.0001 0.0001
1 1 1
] ] ]In(4) 20.0301 20.0301 20.0301 20.0026 20.0026 20.00262 2 2
1
]Cl(1) 0 0 0.0491 20.0491 0.0000 0.0014 20.0013 0.00004
3
]Cl(2) 0 0 0.0491 0.0491 0.0000 0.0007 0.0058 20.01154
1 1 1
] ] ]Cl(3) 20.0491 20.0491 20.0491 0.0052 0.0052 0.00524 4 4
3 3 3
] ] ]Cl(4) 0.0486 0.0486 0.0486 20.0005 20.0005 20.00054 4 4

Table 69one with the s - and the s -parameters, the S mode is3 3 4 The positions of the ions chosen in Table 5 in fractions of the InCl cell
single and the absolute values of its parameters are œ2 parameter
larger than the former parameters. The smaller coordinates

In(1) In(2) In(3) In(4) Cl(1) Cl(2) Cl(3) Cl(4)are put equal to zero. In this way we have introduced an
1 3 1 1 1 1 3
] ] ] ] ] ] ]x 0approximation with three distortion modes of equal 4 4 2 2 2 4 4

1 1 3
] ] ]y 0 0 0 0 02 4 4strength. That this is a reasonable approximation is seen in

3 1 1 3 1 1 3
] ] ] ] ] ] ]z 04 4 2 4 4 4 4Table 4, where the remaining deviations are shown to be

an order of magnitude smaller than the ‘geometric approxi-
degenerate. Though this degeneracy cannot be provenmation’.
exactly, the choice of the equal amplitudes for these modesHere arises a discrepancy with the second Landau
appears to be the correct starting point for the discussion.condition for continuous phase transitions. According to

Finally in Table 5 Table 6 the local distortion modes forLandau and Lifshitz only one symmetry mode of a certain
all types of octahedral environment are given. These haveirreducible representation of the space group can be
been calculated with the symmetry modes defined ininvolved. And we have three modes of different symmetry
Appendix A. One sees a lot of equal numbers. This arisestypes. The idea behind this second condition is, that modes
because of the ‘geometric approximation’ but also becauseof different symmetries are expected to have different
the modes are not independent. From Table 1 or Table 2constants and therefore also different phase transition
there appear to be only 16 independent parameters, whichpoints. However, in the case of InCl this does not pose any
have reduced to 2 in Table 3. What is surprising, however,problem, since there is no phase transition. In addition we
is the complexity which arises in these distortions. With awill show in Section 4 that these modes are nearly

Table 5
4Idealized octahedral symmetry coordinates given as fractions of the cell parameter of InCl310 . The ideal coordinates for the four In sites the four Cl sites

are given in Table 6

In(1) In(2) In(3) In(4) Cl(1) Cl(2) Cl(3) Cl(4)

q(a ) 0 0 0 0 0 0 0 01 g

q(e ) 0 0 0 0 0 0 0 0gu

q(e ) 0 0 0 0 0 0 0 0g e

q(t ) 496 496 2496 2496 300 300 2300 23001 gx

q(t ) 496 2496 2496 2496 300 2300 2300 23001 gy

q(t ) 496 496 2496 2496 300 300 2300 23001 gz

q(t ) 2496 2496 2496 2496 300 300 300 3002 gyz

q(t ) 496 2496 2496 2496 300 2300 300 3002 gzx

q(t ) 2496 2496 2496 2496 2300 2300 300 3002 gxy

q(t ) 300 2300 300 2300 496 2496 2496 4961 u 1 x

q(t ) 300 2300 300 2300 0 0 2496 4961 u 1 y

q(t ) 0 0 300 2300 496 496 2496 4961 u 1 z

q(t ) 701 2701 701 2701 424 2424 2424 4241 u 2 x

q(t ) 701 2701 701 2701 0 0 2424 4241 u 2 y

q(t ) 0 0 701 2701 424 424 2424 4241 u 2 z

q(t ) 0 0 0 0 0 0 0 01 u 3 x

q(t ) 0 0 0 0 0 2600 0 01 u 3 y

q(t ) 0 992 0 0 0 0 0 01 u 3 z

q(t ) 0 0 0 0 0 0 0 02 ux

q(t ) 0 0 0 0 2600 0 0 02 uy

q(t ) 992 0 0 0 0 0 0 02 uz
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is because an octahedron has no ligands on the three-fold
axes. We will see that another mechanism is present, which
causes the point group of the crystal to lower to a
tetrahedral point group.

3. Compound distortions

We have seen that the individual octahedra in InCl are
severely distorted with several kinds of deformations. In
this section we want to discuss compound deformations,
since it will be shown that the deformations in InCl are
characterized by three types of compound distortions. The
first one is chirality, which is well-known and leads to
optical rotation of the plane of polarization, and/or to

Fig. 2. A typical T -distortion mode.2u circular dichroism. It can only be present in dissymmetric
molecules or complexes, which lack an improper rotation
axis, such as inversion or reflection planes or other S -nstereochemical lone pair one expects certainly electric
axes. The octahedral complexes InCl and ClIn in InCl6 6dipolar moments. These are present, since these transform
are obviously dissymmetric, since at most a three-fold

in the point group O as T . There are, however, alsoh 1u rotation axis is left. One can also form expressions from
rotations (T ), and distortions of the T - and T -type.1g 2g 2u the distortions given in the previous section, which de-

Since we prefer to keep the discussion as simple as
scribe this chirality and therefore should show this dis-

possible, we neglect the charge and will only speak of
symmetric character also. Let us denote one of the three

shifts (T ) and strain (T ). Strain, according to Nye1u 2g types of shift, which transform as T by the components1u(1960) [18] can be described as a symmetrical 333 tensor.
m , m and m . And let us denote the components of thex y zThis can be written in components for the pointgroup Oh rotations (transforming as T ) as R , R and R . Then the1g x y zas A 1E 1T of which only the last have appreciable1g g 2g product

values (Table 5).
Special is the T -distortion mode, which is depicted in2u Hel 5 m .R 1 m .R 1 m .R (1)1 x x y y z z

Fig. 2. It arises only on the digonal type of distorted
octahedron, type nr.1 (see Fig. 3 and Table 5). It can be is a measure for chirality. It looks like a scalar product, but
shown to arise from l53 functions, like f-functions. The it changes sign under improper rotations. It does not
InCl crystal could be said to have an octupole lattice, since change sign under rotations. It is often called a pseudo-
the moments of highest order are of the l53 type. From scalar product, because it is not invariant under all
e.g. Cotton (1971) one finds that l53 functions in octahed- symmetry operations (here of the O -point group). Fig. 4h

ral symmetry split into A , T and T functions. We shows pictorially how a helix is formed.2u 1u 2u

expect also T moments from l53 to be present in InCl. These pseudo-scalar products arise for the first time in1u

However, these are mixed with the shifts, which transform the fourth order terms of the Landau expansion, since their
analoguously. Modes of the A -type are not present. This square is totally symmetric for the symmetry operations of2u

the group.
We pursue this treatment a little further, because it leads

to generalizations which are new and which are demon-
strated in InCl. Therefore we give in Table 7 only the
one-dimensional irreducible representations of the point
group O :h

It is readily shown, that Hel transforms as A . For all1 1u

Fig. 3. An In(1)Cl cluster. In order to distinguish the T mode from the Fig. 4. The combination of a polar and a circular(axial) vector, which6 2u

others, the length of its arrows are shown twice as long. form a helix.
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Table 7
Character table of the one-dimensional irreducible representations of the point group Oh

O E 8C 6C 6C 3C i 6S 8S 3s 6sh 3 2 4 2 4 6 h d

A 1 1 1 1 1 1 1 1 1 11 g

A 1 1 21 21 1 1 21 1 1 212 g

A 1 1 1 1 1 21 21 21 21 211 u

A 1 1 21 21 1 21 1 21 21 12 u

improper rotations (or rotoreflections) that are in the right which seems quite sufficient for the treatment of circular
half of the character table, Hel changes sign. Leaving out dichroism and optical rotatory power of ordinary light,1

all operations for which the character is 21 for A gives where in general the wave length of the light is large with1u

the subgroup O, which is expected to allow optical respect to the size of the molecules or complexes. How-
activity, since it no longer contains improper rotations. ever, even in the Condon theory it is not correct to neglect

We are used to this type of chirality, since Condon the size of a molecule with respect to the wave length of
(1937) described the optical activity of chiral molecules, the light used. Hel describes an additional term in the2

mostly in liquid solvents or in vapours, where the rotation expansion, which is not small as can be seen in Table 5.
of the plane of polarization depends a.o. on the rotational In Table 8 we give an illustration of these helical modes
strength: on two neighbouring columns of ions, subject to a single

k -mode and its complex conjugate. This mode represents6R 5 Imkau publ.kbumual (2) 1ba a planar wave along the z-direction. (k 5p(0,0,1) /a ,6 0

where a is the cubic B1 axis.) For each of these ions the0Here the (pseudo-) scalar product of an electric (kaupubl)
columns give their position, their displacements (in the

and a magnetic transition moment (kbumual) is present.
‘geometric’ approximation), and finally all moments of the

Regarding the spatial symmetries the rotational strength
octahedron for which they form the center. One can check

transforms also like A , similar as Hel . But a magnetic1u 1 that a quantity like m1 .R 1m1 .R is equal for the twox x y ymoment contains dimensionally also the time. This is
columns. Instead of m1 we might have used m2 or m3,

correct for an electro-magnetic phenomenon such as
since these are equivalent in a group theoretical sense.

optical activity, but not for static structures as InCl. In the
Similarly Q .F 1Q .F is equal for the neighbouringyz x zx ylatter case the magnetic moments are quenched, and we
columns. Eqs. (1) and (3) give in addition a third product.

find them again as finite rotations.
These arise only properly when also the k -modes travel-6There is another contribution, which also transforms as
ling along the x- and the y-direction are included. It can be

A . When one represents the strains as a vector Q, with1u proven [14] that the lattice modes with the k wave vectors6the components Q , Q and Q and when similarly ayz zx xy induce a ferrodistortive chirality.
vector F is defined by the T -components which transform2u In InCl the procedure just followed can be generalized2 2 2 2 2 2respectively as x( y 2z ), y(z 2x ) and z(x 2y ), one can

for other compound distortions. These compound deforma-
show that the pseudo-scalar product Q.F also belongs to

tions are not so famous as helices, since a corresponding
the A -representation.1u

Hel 5 Q .F 1 Q .F 1 Q .F (3)2 yz x zx y xy z

This is another source of chirality. It arises because the
size of the octahedron is not small with respect to the wave
length of the distortion modes. (The edges of the oc-
tahedron are approximately one third of the wave length of
the D-modes). In Fig. 5 we have sketched this new type of
chirality. The vectors of the T -mode have been replaced2u

by circular currents, as one would expect for the magnetic
moments (before quenching). The relevant strains are
represented with arrows like electric dipoles. Note that
although in each quadrant the direction of the linear arrows
and the circular arrows is different, the sign of their
product remains the same. In analogy to the rotational
strength we would expect here a product of an electric
quadrupole transition moment and a magnetic quadrupole Fig. 5. A new type of chirality represented by circular (axial)vectors from
transition moment. a dynamic T moment. Note that the sense of the helices are the same2 uz

for the four quadrants.We are here beyond the Condon (1937) approximation,
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Table 8
1 4The distortion by the k -mode of two columns of ions. The numbers are fractions 310 of the InCl cell parameter6

In3 Cl2 In4 Cl2 Cl1 In1 Cl1 In11 3 2 3 1 3 1 0 1 2

Position Position
x 0 0 0 0 x 2500 2500 2500 2500
y 0 0 0 0 y 0 0 0 0
z 0 2500 5000 7500 z 0 2500 5000 7500
Shifts Shifts
dx 150 0 2150 0 dx 248 0 2248 0
dy 0 2248 0 248 dy 0 2150 0 150
dz 0 0 0 0 dz 0 0 0 0
Moments Moments
R 248 0 2248 0 R 150 0 2150 0x x

R 0 2150 0 150 R 0 2248 0 248y y

R 0 0 0 0 R 0 0 0 0z z

Q 2248 0 248 0 Q 2150 0 150 0yz yz

Q 0 2150 0 150 Q 0 2248 0 248zx zx

Q 0 0 0 0 Q 0 0 0 0xy xy

m1 150 0 2150 0 m1 248 0 2248 0x x

m1 0 2248 0 248 m1 0 2150 0 150y y

m1 0 0 0 0 m1 0 0 0 0z z

m2 350 0 2350 0 m2 212 0 2212 0x x

m2y 0 2212 0 212 m2 0 2350 0 350y

m2 0 0 0 0 m2 0 0 0 0z z

m3 248 0 2248 0 m3 150 0 2150 0x x

m3 0 2150 0 150 m3 0 2248 0 248y y

m3 0 0 0 0 m3 0 0 0 0z z

F 248 0 2248 0 F 150 0 2150 0x x

F 0 150 0 2150 F 0 248 0 2248y y

F 0 0 0 0 F 0 0 0 0z z

phenomenon such as optical activity is lacking. Suppose Tetr 5 R .F 1 R .F 1 R .F (5)2 x x y y z z

we have a quantity that belongs to an A representation.2u

That can only exist when all symmetry operations which Table 9 displays the moments of two neighbouring
1 1have a character 21 for A are taken away. Starting from columns for the k -mode (k 5p(2,0,1) /a ). This is also a2u 8 8 0

the original O point group symmetry, we arrive at T . In circularly polarized mode, but the helical sense of twoh d

other words there is tetrahedron forming. Since we already neighbouring columns is opposite. This corresponds with
discussed the formation of helices, we can see from Table the formation of an antiferrodistortive ordering of chirality
7 that only the point group T is left, if we cut all symmetry by these modes [14]. The tetrahedral expressions Tetr and1

elements for which the character is 21 either from A or Tetr give the same value for the two columns. This1u 2

A . indicates that the k -modes induce the ferrodistortive2u 8

The following pseudo-scalar product between shifts and tetrahedron character, which can be proven [14].
strains belongs to A : A third compound distortion transforms as A . The2u 2g

Tetr 5 m .Q 1 m .Q 1 mz.Q1 x yz y zx xy

This expression is easily explained, since it behaves as
xyz and has therefore plus and minus signs on the corners
of a cube (Fig. 6).

The trigonally distorted octahedrons, point along three-
fold axes to the corners of the cubic cell. One could
imagine that all eight corner-directions of the cube were
equally used, so that the cubic symmetry would again be
restored. This, however, is not the case in InCl, where
there are 20 trigonally distorted octahedra in a cell. Since
20 is not divisible by 8 cubic symmetry cannot exist. A
tetrahedral symmetry can, however.

We note that a second contribution to the A irreducible2u

representation is formed by: Fig. 6. A cube showing the symmetry of xyz (A ).2 g
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Table 9
1 4The distortion by the k -mode of two columns of ions. The numbers are fractions 310 of the InCl cell parameter8

In3 Cl2 In4 Cl2 Cl In1 Cl1 In11 3 2 3 1 3 10 1 2

Position Position
x 0 0 0 0 x 2500 2500 2500 2500
y 0 0 0 0 y 0 0 0 0
z 0 2500 5000 7500 z 0 2500 5000 7500
Shifts Shifts
dx 150 0 2150 0 dx 248 0 2248 0
dy 0 248 0 2248 dy 0 2150 0 150
dz 0 0 0 0 dz 0 0 0 0
R 2248 0 248 0 R 150 0 2150 0x x

R 0 2150 0 150 R 0 2248 0 248y y

R 0 0 0 0 R 0 0 0 0z z

Q 248 0 2248 0 Q 2150 0 150 0yz yz

Q 0 2150 0 150 Q 0 2248 0 248zx zx

Q 0 0 0 0 Q 0 0 0 0xy xy

m1 150 0 2150 0 m1x 248 0 2248 0x

m1 0 248 0 2248 m1 0 2150 0 150y y

m1 0 0 0 0 m1 0 0 0 0z z

m2 350 0 2350 0 m2 212 0 2212 0x x

m2 0 212 0 2212 m2 0 2350 0 350y y

m2 0 0 0 0 m2 0 0 0 0z z

m3 2248 0 248 0 m3 2150 0 150 0x x

m3 0 2150 0 150 m3 0 248 0 2248y y

m3 0 0 0 0 m3 0 0 0 0z z

F 2248 0 248 0 F 2150 0 150 0x x

F 0 150 0 2150 F 0 2248 0 248y y

F 0 0 0 0 F 0 0 0 0z z

reduction of the point group of the crystal from O could 4. The lattice modesh

be imagined by combining an object transforming as A2g

and helices or tetrahedrons. We named these spirals and a The modes which form the geometric approximation
quantity that transforms as a spiral (A ) is: have been denoted in [14] by the k , the k and the k2g 6 8 4

vectors. In Fig. 8 we picture the displacements of the ions
Spir 5 R .Q 1 R .Q 1 R .Q (6) due to the k vectors travelling in the z-direction. These1 x yz y zx z xy 6

look similar to transversal planar waves. The amplitudes
for the In- and the Cl-ions differ as has to be expected. ButOne expects also a second form:
their helical displacements are a result of their circular

Spir 5 m .F 1 m .F 1 m .F (7)2 x x y y z z polarization. There are similar helices for the x- and the
y-direction. These k -waves give the ferrodistortive chi-6

rality of InCl, since the senses of these helices along theEspecially Spir is demonstrated clearly in the structure.1
1z-direction are all the same. In -ions are represented byCharacteristic is half the swastika which is decomposable

2the smaller circles. Cl are represented by the largerin a rotation and a strain (Fig. 7). Their product taken over
circles. The different types of ion have been indicated withall directions is equal to Spir . For the geometric approxi-1

black quarters, which are numbered as the quarters of anmation, an antiferrodistortive type of ordering is found.
hour. The difference between the four types shows onlyThe contribution from Spir happens to be zero for the2

when different kinds of waves are superimposed on eachgeometric approximation. It is not zero for e.g. only the
other.D-waves.

Characteristic for of the three types of modes is that
rows of ions are shifted longitudinally and dimerized. This
dimerization helps to make space for the lone pairs. The
difference between the three modes is due to their transver-
sal behaviour. For the k neighbouring rows shift in a6

parallel way.
The displacements due to the k -modes, which travel in8

the z-direction are shown in Fig. 9. These are also helical,Fig. 7. The decomposition of the ‘spiral’ compound mode into a strain
however, neighbouring columns differ in sense. Therefore,(T ) and a rotation (T ). Their product represents a part of the bilinear2g 1g

product, which transforms as A . this does not lead to ferrodistortive chirality. One can show2g
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1 1 2Fig. 8. k for z50 (left) and z51/4 (right). In (Cl ) ions are represented by small (large) circles. The types of ion (1, 2, 3, or 4) are denoted like the6

quarters of an hour.

1Fig. 9. k for z50 (left) and z51/4 (right). The ion notation is the same as that for Fig. 8.8

that an antiferrodistortive pattern of chirality is formed. for the k modes. However, neighbouring rows are now6

These waves appear to produce a ferrodistortive arrange- shifted in the opposite direction.
ment of tetrahedral deformations like in Fig. 6. We studied also what happens when these k and k6 8

The longitudinal pattern from the k modes is similar as waves are combined (Fig. 10). Especially in the geometric8

Fig. 10. The complete k - and k -modes for z50 (left) and z51/4 (right). The asterix denotes a column of type 1 ions, which have parallel T -modes.6 8 2u
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Fig. 11. The x-, y-, z-components of the displacements of the k -modes for z50 (left) and z51/4 (right). The dotted line denotes ions with even modes4

(see Fig. 7).

approximation, since their amplitudes are equal in absolute arrangement for the k vectors. For example, in Fig. 11 at4

sense, these waves reinforce or annihilate each other. The the right along the dotted line, the spirals have the same
different types of ion are formed. The total chirality sign as those in the same square on the left. This is because
appears to be conserved, as we could check with a both the rotation and the strain change sign. On the other
computer, but the contribution of the local sites differs. hand on the square at the left of this figure either the
This phenomenon is called interference. Fig. 10 shows this rotation or the strain has changed sign and therefore the
for z50 and z51/4. The asterisk denotes two type 1 ions, Spir has an opposite value for these planes.1

which form a column with T -deformations. Notice how Figs. 12 and 13 give the combination of these three2u

through the shifts of rows the type 1 anions and cations modes and consequently represent the ‘geometric’ approxi-
naturally fit together. mation.

In Fig. 11 we show the displacements due to k modes. As has been shown, the distortions can be described as4

These are special since these introduce the spirals. A series line displacements of rows of ions. In the ‘geometric’
of these forms have been indicated by a dotted line for approximation it turns out that only 3 /4 of all line
z51/4. Note that these fill part of the gaps left open by the displacements are present. The space group, however, has
interference of the k and k -modes (Fig. 10). The then already been reduced to P2 3. But one can show that6 8 1

longitudinal pattern of the k modes is similar as for the the type 2 InCl octahedra are not trigonally distorted yet.4 6

other modes. However, neighbouring rows are not shifted By comparing the real structure and the approximate one,
at all. We expect that the dimerization requires most of the it appears that the extra distortions change the type 2 InCl6

energy and that since these modes do not differ in this and ClIn into ‘almost’ trigonal ones. The digonally6

respect these are practically degenerate. distorted octahedra, however, keep their characteristic
One can show that the spirals have an antiferrodistortive shape (Fig. 1).

Fig. 12. InCl in the ‘geometric’ approximation; z50 (left) and z51/4 (right).
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Fig. 13. InCl in the ‘geometric’ approximation; z51/2 (left) and z53/4 (right).

5. Discussion T -components. It is due to the fact that the octahedrons’2u

dimensions are not small with respect to the wave length
Summarizing, we have described the cooperative Jahn– of the helix. When one could go back from the static case

Teller effect of two types of InCl -octahedra, which in InCl to the dynamic case for light, one would be able to6

exhibit stereochemical activity of the lone pairs arising deduce an additional optical rotation strength proportional
2 1from the (5s ) outer electron configuration of the In -ions. to:

That this is due to pseudo-Jahn–Teller effects and Jahn–
kauQ ublkbu.Q ual (8)e mTeller effects has been established previously ( [9,10]).

We have started with the local description of the
distortions of the octahedra, which are regular in the Here the product of a transition moment of an electric
undistorted B1 structure. This method has developed in our quadrupole and a magnetic quadrupole are given. (Q ise

group. It can be used when evidence is available for restricted to its T -subset.) In Fig. 5 we have sketched2g

distortions of more symmetric complexes. In the case of these. This goes beyond the Condon [17] approximation,
yellow InCl, its space group is a subgroup of the group of which is particularly able for the description of the optical
rocksalt. There are also no space groups in between rotation of small molecules. We are not aware of rotational

4 5¯P2 3(T ) and F3m (O ), which could have been chosen. strength of this quadrupolar type, for e.g. liquid crystals,1 h

The distortions due to k and k lead directly to the space where the size of these molecules is often of the order of6 8

group of InCl. The relatively large number of local modes the wave length of light (e.g. [20]).
needed to describe the distortions is surprising. The k modes cause the ferrodistortive chirality. The6

Rather than describing all arrangements of the primary k -modes and the k -modes induce antiferrodistortive8 4

moments of distortion, we studied the compound distor- arrangements of chirality. Due to interference of these
tions. There are three types. The helices, the tetrahedrons modes, there is a lot of reshuffling. But the total chirality,
and the spirals. These descriptions are original, although calculated by Hel or /and Hel remains the same when1 2

helical distortions are more known from the theory of summed over all sites, as we found out by calculation. In
optical rotation (see e.g. Kauzmann [19]). The static particular the difference between the octahedra of type 1
helices in InCl can be related to the description of the and the others is a result of this interference. This applies
optical rotation strength, which is a product of an electric to the InCl as well as the ClIn octahedra of type 1. It is6 6

and a magnetic transition moment (Condon [17]). We have only the ferrodistortive chirality that is expected to be
to consider in the static structure the magnetic moment as measurable by optical polarimetry or circular dichroism.
quenched, which means that the magnetic moment is The two other compound distortions are not so well-
replaced by a finite rotation. The time is left out and the known, since these have no corresponding optical applica-
spatial behaviour of the rotation and the magnetic moment tions. We are unaware of earlier descriptions of these. We
are similar (both behave as axial vectors, see e.g. Nye [18] have established in Section 2, that individual octahedrons
for the definition of ‘axial’ vectors). The pseudo-scalar never show tetrahedrons. Because there are no ligands on
product of shifts and rotations gives then the measurable the three-fold axes, there are no A -distortions. Therefore2u

quantity Hel . It changes sign for all improper rotations the resulting tetrahedral symmetry of the crystal has to1

(rotoreflections) like the optical rotation strength. come from the compound distortion, which transforms as
There is, however, a second form, which transforms A .2u

similarly. It is the pseudo-scalar product of strain times As we have seen, the space group of yellow InCl is a
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Table 10subgroup of the space group of NaCl. This means that the
Symmetry modes of an octahedronfirst condition for continuous phase transitions according to
q(a ) (x 1y 1z 2x 2y 2z ) /œ6Landau and Lifshitz [13] has been fulfilled. We have 1g 1 2 3 4 5 6

q(e ) (2z 2x 2y 22z 1x 1y ) /œ12gu 3 1 2 6 4 5discussed also the second condition.
q(e ) (x 2y 2x 1y ) /2ge 1 2 4 5The third condition for a second order phase transition is
q(t ) (z 2y 2z 1y ) /21gx 2 3 5 6that no third order anharmonic term should be present. It q(t ) (x 2z 2x 1z ) /21gy 3 1 6 4

can be proved, however, that the three modes of different q(t ) ( y 2x 2y 1x ) /21gz 1 2 4 5

q(t ) (z 1y 2z 2y ) /2irreducible representations together give a third order 2gyx 2 3 5 6

q(t ) (x 1z 2x 2z ) /22gzx 3 1 6 4invariant [14]. And also that this can be traced back to the
q(t ) ( y 1x 2y 2x ) /22gxy 1 2 4 5anharmonic energy term of the digonally distorted oc-
q(t ) x1u1x 0tahedron [10] (see Fig. 3). In the hypothetical case of a q(t ) y1u1x 0

phase transition to the rocksalt structure this condition q(t ) z1u1x 0

q(t ) (x 1x ) /œ2would have been proof of a first order phase transition. 1u2x 1 4

q(t ) ( y 1y ) /œ21u2y 2 5Also, when having three modes belonging to different
q(t ) (z 1z ) /œ21u2z 3 6irreducible representations, one expects energy terms
q(t ) (x 1x 1x 1x ) /21u3x 2 3 5 6which are a consequence of their coexistence. The third q(t ) ( y 1y 1y 1y ) /21u3y 1 3 4 6

order invariant is the first term of the expansion of the free q(t ) (z 1z 1z 1z ) /21u3z 1 2 4 5

q(t ) (x 2x 1x 2x ) /2energy, that accomplishes this. Obviously the third order 2ux 2 3 5 6

q(t ) ( y 2y 1y 2y ) /22uy 3 1 6 4anharmonic energy term of the type 1 InCl octahedron is6
q(t ) (z 2z 1z 2z ) /22uz 1 2 4 5of pivotal significance for this structure.
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